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Abstract. All current urban models accept the ‘first-order recursion’ view, namely, that the state of an
urban system at time ¢ is sufficient for predicting its state at 7+ 1. This assumption is not at all
evident in the case of urban development, where the behavior of developers and planners is defined by
the complex interaction between long-term and short-term plan guidelines, local spatial and temporal
conditions, and individual entrepreneurial activity and cognition. In this paper we validate the first-
order recursion approach in an artificial game environment: thirty geography students were asked to
construct a ‘city’ on the floor of a large room, with each student using the same set of fifty-two
building mock-ups. Based on the analysis of game outcomes, the first-order recursive set of behavioral
rules shared by all the participants is estimated and further employed for computer generation of
artificial cities. Comparison between the human-built and model patterns reveals that the constructed
set of rules is sufficient for representing the dynamics of the majority of experimental patterns;
however, the behavior of some participants differs and we analyze these differences. We consider
this experiment as a preliminary yet important step towards the adequate modeling of decision-making
behavior among real developers and planners.

1 Introduction

During the last decade we have witnessed a boom in urban modeling. Different from
the regional models of 1980s, the new wave of high-resolution models focuses on
behavior and transformations of urban objects (Benenson and Torrens, 2004). Numerous
models of land-use dynamics, car and pedestrian traffic, residential migration, and
service relocation, among others, have already been published. When the modelers
aim at an explicit implementation of the behavior of individual urban agents—pedes-
trians, car drivers, householders, urban developers, or entrepreneurs—they apply
multiagent systems (MAS); when they limit themselves to the infrastructure outcomes
of human actions, they turn to cellular automata (CA) models.

Whether implementing an MAS or CA perspective, the modeler must formulate
the rules of the objects’ ‘behavior’ in space —time: the rules of agent behavior in MAS,
or cell transition rules in CA. Analysis of existing models reveals a definite fashion in
the formulation of these rules. If we limit ourselves to the dominant discrete-time and
probabilistic view of urban systems, we can readily observe that the model rules
describe the state and location of the objects that have been changed, added, or
removed during the recent time step as being exclusively dependent on the state of
the system at the previous time step. Possible dependence on the longer history
is ignored, usually for a very practical reason—the experimental data necessary
for testing this assumption are barely available. The evasion, however, is not at all
evident—urban development is the outcome of efforts by developers and planners, the
latter defined by the complex interaction between the long-term and short-term plan
guidelines and the associated implementation policy, local spatial and temporal condi-
tions, as well as individual entrepreneurial activity and cognition. In this paper we take
the first step towards an experimental validation of the first-order recursion approach
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as an urban modeling perspective. We limit our study to an artificial environment and
perform a series of thirty experiments in which a game participant constructs an
artificial ‘city’ by locating ‘buildings’ on the floor of a large room. We then determine
whether the first-order recursion is sufficient for representing the dynamics of the
urban patterns that emerged in these thirty games.

2 Views of urban dynamics and human developers’ behavior in space

2.1 Urban CA and MAS models

CA models of land-use dynamics consider urban areas as consisting of many parcels,
each of which is in one of several discrete, easily recognized land-use states
{sy, $,, 83, ...}—dwelling, industry, open land, and so forth. The description of urban
dynamics in CA land-use models is based on the Markov field model and its extensions
(Benenson and Torrens, 2004). The Markov field model is a typical first-order recur-
sion; it assumes that the transition probability p; that the state of a cell at # + 1 will be
s; depends on the cell’s state 5; and the states of the cell’s neighbors at ¢ only.
Investigation of CA land use focuses on the equilibrium distributions of land uses
and the convergence toward that equilibrium (Boerner et al, 1996; Gobin et al, 2002;
Jahan, 1986).

Markov field models consider p; to be independent of cell location and time. CA
land-use models go far beyond this limitation and account for p; as being dependent
on location, say the distance to the nearest cell of a specific type (eg ‘road’; see Clarke
et al, 1997), or a (externally defined) demand for cells in a given state (White and
Engelen, 1997). Other factors, such as population density (Yeh and Li, 2002) and major
landscape characteristics, including elevation, slope, and suitability of the soil for
agriculture (Brown et al, 2002; Hathout, 2002; LaGro and DeGloria, 1992; Lopez
et al, 2001) are often included.

In the majority of CA models, the validity of the first-order recursion is taken for
granted. However, this postulate has been indirectly confirmed by the model’s high
explanatory ability—in some cases up to 95% of future land uses could be predicted in
this way (Gobin et al, 2002). Other cases exist, however, in which knowledge of
previous land use is not helpful for predicting future changes (Bell, 1974), or in which
the transition probabilities p; change in time (Weng, 2002).

Successful urban MAS applications of which we are aware include those of
Benenson et al (2002), who captured residential dynamics in an ethnically mixed
area of Tel Aviv, and Pentland and Liu (1999), who predicted drivers’ actions in a
controlled virtual reality environment with 95% accuracy. Both follow the first-order
recursion approach.

2.2 Urban spatial games

One promising approach to studying the dynamics of an urban system as an outcome
of developers’ efforts is to imitate development by means of a dynamic game—either
virtually implemented with a computer (Cecchini and Rizzi, 2001; Semboloni et al,
2003) or actually performed with physical objects. Until now, all the game-based
studies of human spatial behavior that we are aware of have considered economic
behavior alone. Most popular is the experimental reproduction of the famous Hotelling
(1929) result, which states that the only stable outcome of competition between two
firms for customers distributed over a 1D interval is the location of both sellers in the
center of the interval. The games that imitate the spatial location and relocation of
buyers and sellers have been investigated in several papers, yet these have not always
confirmed the theoretical results (Camacho-Cuena et al, 2005; Collins and Sherstyuk,
2000; Huck et al, 2002).
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Mock-up modeling is one basic element of architectural work, where setups of
mock-up buildings and groups of buildings in urban environments are standard tools
of project presentation (Radford, 2000). However, the shift from the use of static mock-
ups to dynamic experiments in which participants construct a ‘city’” was proposed by
Portugali only recently (1996). We are aware of two implementations of games of this
kind (Mayer et al, 2004; Portugali, 2000), both of which involve many players, with
each adding infrastructure units to the emerging pattern. The respective players can
employ different types of construction behavior, thus introducing additional variance
into the experimental results. We view our study as innovative, given that participant
behavior is analyzed quantitatively; to establish the methodology for detailed analysis
of human developers’ behavior, we focus on a simpler situation, in which only one
person makes all the location decisions.

3 Description of the experiment

Thirty undergraduate geography students were asked to ‘construct a city’ using fifty-
two mock-ups to be situated on the floor of a large space (a hall). The game’s area took
the form of a trapezoid®® of 28.2 m? in size. The set of mock-ups was developed by
Portugali (1996) and has been used for various experiments (Portugali, 2002). The
mock-ups represented real buildings at a 1:100 scale; they also represented different
urban functions—small-height and medium-height dwellings, commercial sites, office
buildings, and so on. The average size of a mock-up was 20 cm x 20 cm, although it
could range from 10 cm x 10 cm to 40 cm x 40 cm (figure 1).

Figure 1. Seven of the fifty-two mock-ups used in the experiments (the floor tiles are of
20 cm x 20 cm size).

(M The experiments were captured by video camera in fixed position, with a trapezoidal view.
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Each participant constructed the ‘city’ once, by positioning mock-ups one at a time,
in fifty-two steps of time ¢. During a time step, the participant chose a building from the
remaining stock, declared its urban function, and then positioned it. The participant
was not permitted to relocate or return a mock-up to the original stock once it was
positioned. The experiment was concluded when all fifty-two mock-ups had been placed
on the floor. While participating in the experiment, the participant could declare one
of seven urban functions for a building—dwelling, commerce, entertainment, culture,
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Figure 2. (a) A snapshot of a game outcome; (b) its GIS presentation by means of mock-up
foundation polygons.
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Figure 3. Six typical cities constructed in the experiments.
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religion, industry, or office. After analyzing the experiments, we combined five
infrequently employed building functions—commerce, entertainment, culture, religion,
and office—into one, thereafter called service.

At each step, the mock-up’s urban function, identifier, position, and orientation
were recorded. Buildings were further represented as features of a GIS layer (figure 2),
thus enabling spatial analysis of the results.

Figure 3 presents the final patterns of six cities, randomly selected from the thirty
game outcomes produced.

4 A constant set of shared first-order recursive rules as the null hypothesis

The full history of the city game built by participant b from the beginning of the game
until time 7 (inclusively) is given by a (¢ + 1)-dimensional vector of the city history
CP, representing all ‘construction’ actions: C> = X0 — X? — , ..., — X, where arrows
denote ordered sequences. According to the experimental framework, each X7 is a
pair (f°, I°) where f° is the chosen building’s function and / its location. It is
important to distinguish between system history, given by C” and city pattern,
P} = {X{, X!, ..., X!}, with curled brackets denoting unordered sequences. Let us
denote the rules that b employs at ¢ as u”; the game participant establishes X° by
applying u, ,, given C”,:

X0 = u, (C)), t = 1,2,...,51. (1)

Formula (1) expresses the general view of the behavior of the game participant. For
real-world cities, the meaning of (1) is mainly conceptual; as discussed above, the
typical modeling approach is to simplify (1), assuming that only the immediate past,
given by P, matters. In terms of the game, this can be put as follows:

e The game participant b determines f° and [ on the basis of P, only,

e The rules u” that b applies do not change in time: Vz, u = u",

e All the participants share the same set of rules: Vb, u° = u.

Formally, time-independent shared first-order recursion can be expressed as follows:
XP = u(Ply). 2)

The range of views that fall between (1) and (2) is very broad. As a first step
beyond (2) and towards (1), one can consider each participant as applying different
sets of rules, with each set accounting for the previous pattern only: X° = u®(P?,), or
the shared set of rules which evolves with the evolution of the city: X? = u, ,(P])).
Furthermore, one can assume that u; depends, among other things, on b’s actions
during several previous time steps, on some of the previous actions and so forth.

Accepting conceptual presentation (2), we have to specify the set of rules u; this
can be done in numerous ways. We see our study as an innovation step, with formula-
tion of such a set as one of our goals. The set we propose below is sufficient for
describing the dynamics of the majority of patterns. Several of the patterns that deviate
from this set are recognized and investigated.

5 Analysis of the experiment

As defined above, the behavioral actions u) |, t = 1, 2, ..., 52 represent two elementary
acts performed by b during a time interval (z — 1, #)—choice of the mock-up’s function
/> € {dwelling, service, industry} and choice of its position /7. To begin the analysis,
let us assume that P}, is sufficient for determining X, and u”, does not depend on b
and 7: VbVt, u? = u; if so, the experimental data can be considered as thirty repetitions
of the same behavioral mode. To estimate u, let us proceed with analysis of the ;> and
[’ sequences separately.
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5.1 Choice of a building’s urban function f,°
To verify the rules of building function choice, let us analyze f,°, — f* pairs of choices
in thirty games (table 1):

The data in table 1 are strongly in favor of the dependence of f, on
fioi (x* = 556.6, p < 0.001, contingency coefficient C = 0.52). We thus continue the
analysis, assuming that participants’ choices of the next building’s function depend
on the function of the previously chosen building.

Table 1. Observed and expected, in cases of independent choice (in brackets), frequencies of
Jir — /i pairs.

S /i

dwelling industry service
dwelling 743 (570.8) 54 (115.1) 135 (246.1)
industry 52 (115.1) 93 (23.2) 43 (49.6)
service 142 (251.1) 42 (50.6) 226 (108.3)

To investigate the sufficiency of the first-order shared time-independent recursion
regarding choice of building function, we tested whether the dependence of f, on f,_,
can be considered as a first-order Markov chain. In the case of a Markov chain, the
probability that f; is chosen, given certain f, ,, s > 1, is a power of s of the matrix
P = || p; || of the first-order transition probabilities (table 2) (Isaacson and Madsen, 1976).

Table 2. Probability p; of choosing a building of function j, given building function i chosen at
the previous time step (calculations are based on table 1 results).

i(fio) )

dwelling industry service
dwelling 0.797 0.058 0.145
industry 0.277 0.495 0.229
service 0.346 0.102 0.551

We thus compared the experimental frequencies of f,_, — f, transitions with the
predictions according to the frequencies of the first-order f,_, — f, transitions (table 2).
Table 3 presents the results of this comparison for s = 1, 2, and 3:

Table 3. Comparison of experimental and theoretical frequencies of f,_, — f, transitions for

s =2,3,4.

Time delay s P Degrees of freedom  Significance  Contingency coefficient C
2 6.169 8 p ~ 0.628 0.064

3 23.743 8 p ~ 0.003 0.126

4 23.459 8 p ~0.003 0.127

Table 3 confirms the first-order Markov chain as a model of participants’ choice
regarding f,_, — f, transitions, although the result does not hold to the same degree for
longer histories, that is, ,_; — f, and f,_, — f, transitions. A review of the 3> compo-
nents demonstrates that industry — industry transitions are the main contributors to
the discrepancy (table 4).
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Table 4. Components of x> when comparing experimental and theoretical frequencies of transition
for s = 2, 3, and 4.

Transition (observed —expected)?/expected

,f;—x f; s =2 s =3 s =4
dwelling dwelling 0.890 3.711 2.354
industry dwelling 0.494 3.516 1.864
service dwelling 0.678 1.212 0.063
dwelling industry 1.243 2.546 4.292
industry industry 1.134 6.429 12.445
service industry 0.314 0.330 0.826
dwelling service 0.998 4.566 1.081
industry service 0.038 0.202 0.472
service service 0.382 1.232 0.062
Total y* 6.169 23.743 23.459

Looking closer at the industry, ;| — industry, transitions, the observed and expected
numbers are 60 versus 52.3, respectively, for s = 2; 50 versus 35.0 for s = 3; and 46
versus 27.5 for s = 4. That is, within the confines of the experiment, participants
returned to industry mock-ups a few steps later at more frequent rates than might
have been expected assuming that choice of a building’s urban function is indeed
part of a first-order Markov chain. We did not proceed with this analysis because,
given the data, we could conclude that although the participants’ choice of building
function was not fully first-order Markov chain-related, it quite closely resembles it.

5.2 Choice of building location /°
Just as we rejected the hypothesis that a building’s function at ¢ does not depend on the
building’s function selected at 7 — 1, we can reject the hypothesis that /° does not
depend on P! ,. To prove this formally, we applied the nearest-neighbor index r(1)
(Clark and Evans, 1954) to the final game patterns, ignoring the building functions.
Namely, we simulated the location patterns of fifty-two buildings provided that the
next building was randomly located on the unoccupied area, and then compared
the mean value of r.(1) over 30 experimental patterns, with the r,(1) calculated
over 500 patterns generated by the model. The results were r. (1) = 354 cm
(SD, = 5.1 cm), r,,(1) = 38.7cm (SD,, = 3.0 cm); applying ¢-criteria, one obtains
that the difference r,,(1) —r.(1) = 3.3 cm is significant at p < 0.005. We can thus
reject the hypothesis that /, does not depend on the participant’s previous choice of
buildings location.

Let us propose the set of rules that describe how information from P, is utilized
when establishing position /7 of the building with a given function f".

5.2.1 Which characteristics of P, are taken into account?

The assumption that P, defines /> demands specification—for example, one might
assume that [’ is determined by the location /°, and the function £,°, of the previously
established building. We investigated this hypothesis and found that the rules based on
unitary buildings did not engender satisfactory results. What did work was the depend-
ence of [” on the properties displayed by the entire pattern P ,. In the following
discussion, we consider the following set of rules: the probability of choosing a certain
location / for a building of function £,” is defined by (a) three distances between / and
the nearest buildings of each of the three functions in P, and (b) the direction of the
vector connecting the nearest building of function type £ in P°, and /.
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5.2.2 Dependence of 1" on the distance to the nearest building in P"

Let us denote the locations of the dwelling, service, and industry buildings in P, that
are nearest to a certain location /, as ndwelling” , ,, nservice,b,L ;, and nindustry; .
The distributions of the distances between / and ndwelling,bi " nservice,b,lt ,» and
nindustry,lil_, were estimated with experimental GIS maps [figure 2(b)] and are
presented in figure 4.

The distributions of the distances in figure 4 reflect the participants’ tendency to
cluster: according to figures 4(a), 4(e), and 4(i), participants indeed prefer to locate a
new building near a standing building of the same functional type, while staying far
away from buildings of other types. The effect was strongest in the case of dwellings,
where 80% of the buildings were located at a distance less than 60 cm from an existing
dwelling [figure 4(a)]. The distances between industry and dwelling buildings [fig-
ures 4(b) and 4(d)] exhibited the greatest aversion between urban functions, while the

(a) dwelling, , — dwelling, (b) industry, , — dwelling, (c) service, ; — dwelling,
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Figure 4. Distributions of distances between nearest neighbors for fifty-two steps.
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distances between service and dwelling buildings represented an intermediate situation
[figures 4(c) and 4(g)].

Location /] also depends on the angle between the buildings. We consider this
dependence as reflecting the participants’ tendency to construct streets.

5.2.3 The choice of location reflects the tendency to plan streets

It is observable to the naked eye that the participants tended to locate buildings in
street-like configurations (figure 3). This tendency can be quantified using the angle
between consecutive buildings.

Let the building of a functional type f be located at /in P’ ,. Let us denote as n/’
the location of the f-type building nearest to / and as nnl”, the location of the f-type
building nearest to nl” . Let qﬁ,bi , and n¢,‘1 . be the angles between the vectors (nl’ |, [1)
and (nnl? |, nl® ) and the x-axis, respectively (figure 5).

Analysis of the experiments’ GIS maps reveals that the game participants prefer to
orient houses either along the line of already established buildings or perpendicular
to that line; formally, that means that ¢, depends on n¢” . This tendency is strong
when the distances between nnl’ |, and nl’ |, as well as between nl”, and I°, are below

nl,

Figure 5. Vectors (nnl),, nl” ) and (nl>,, [), and the difference in their direction.
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Figure 6. Histograms of the differences in direction of the vectors connecting the closest pairs of
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nl®,, and between n/°, and I, is below 70 cm; (b) the remaining cases.
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70 cm [figure 6(a)]; it quickly fades away and is not observed when one or both of
these distances exceed 70 cm [figure 6(b)]. In what follows we employ this tendency for
distances less than 70 cm.

5.2.4 Lack of boundary effects in experimental patterns

The above estimates of pattern development are based on the patterns’ characteristics
and do not account for the limited area available for construction. To distinguish
between the view of the trapezoid borders as neutral, attractive (eg shorefront or
recreation area) or, alternatively, unappealing (eg a highway) natural frontiers, we
estimated the average density of the buildings over all thirty patterns as a function of
the distance from the trapezoid’s center® (figure 7).

According to figure 7 the overall density of the buildings is slightly higher in the
absolute center and stabilizes at the higher distances; we thus accept the view that
the experiment’s participants regarded the trapezoid’s boundaries as neutral physical
borders. This assessment coincides with the participants’ comments, made during the
experiment. To illustrate, Amir stated: “I'm locating buildings like commerce and
cultural buildings, which serve the entire city and should be highly accessible, in the
center. Residential areas are located on the center fringe; this allows us to maintain

good, quiet living areas, easily accessible to the center. This way people will visit the
center more often.”
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Figure 7. (a) Mean densities (per 30 cm x 30 cm area unit) of buildings per experiment as a
function of the distance from the center of an area, according to the buffers of 50 cm width,
constructed as in (b).

6 From specific rules to an integral description of participants’ behavior

To combine the revealed dependencies, let us consider the distributions in figures 4
and 6 as potentials—three distance potentials regarding the nearest neighbor of each of
the three functional types and a direction potential regarding buildings of the same
functional type for expanding the street network. Assuming that these potentials
determine the participants’ location decisions, we can investigate their sufficiency for
reproducing the patterns that emerged in the experiments (figure 3). Before attempting
to do so, we have to establish how game participants might react to these potentials
and how we can formally model that behavior.

@ Thanks to an anonymous referee for raising the question of the importance of boundaries.



Building a city in vitro 697

6.1 Possible formalization of participants’ behavior: bounded rationality versus optimization
The two views of human ability to consider several factors that potentially influence
behavior are generally referred to as perfectly rational and bounded rationality
(Rubinstein, 1998). As a rule, if the participant’s rationality is bounded, the utility
of a location and the consequent location decisions are determined by ‘sufficiently
powerful’ factors, but not necessarily the most powerful or all of the factors poten-
tially influencing those decisions (Gigerenzer and Goldstein, 1996). In our case,
participants desirous of being perfectly rational should be able to combine all four
of the potentials previously listed.

Data on thirty artificial cities are sufficient to verify how participants combined
pairs of potentials: the tests confirmed that the dependence of /° on the distance to the
two nearest neighbors in p”, can be presented as a product of the marginal depend-
ences of I” on the distances to each member of the pair. To illustrate, table 5 presents
the experimental potential of establishing industry depending on the distances to the
nearest industry and service buildings in p,, versus the product of the marginal
potentials for establishing industry when depending on the distance to the nearest
industry and service buildings separately in the same pattern.

Table 5. Observed and expected (in brackets) frequencies of industry buildings, depending on

distances from previously located nearest industry and service buildings (3> = 7.4, degrees of
freedom = 12, p ~ 0.83).

Distance from Distance from service (cm)
industry (cm)

0-60 60—-120 120—180 180240 >240
0-60 4 (4.5) 30 (29.2) 27 (26.0) 23 (24.0) 18 (18.2)
60—120 3 (1.9 10 (12.0) 9 (10.7) 11 (9.9) 9 (7.5)
>120 0 (0.6) 5@3.7 4 (3.3) 3.1 1 (2.3)

Table 6 presents the x> comparisons for several pairs of potentials, estimated
according to the distance to the two nearest neighbors in p”,, and as a product of
two marginal potentials in six cases arbitrarily chosen among the twenty-four possible
cases.

Table 6. The results of the y*> comparison between directly estimated two-dimensional potentials
and the product of two one-dimensional potentials.

fP-type Nearest-neighbor Nearest-neighbor 72 Degrees of Significance
type type freedom

industry industry service 3.802 8 p~0.87
industry industry dwelling 11.831 10 p ~ 0.30
service industry service 7.391 12 p~0.83
service industry dwelling 33.122 15 p ~0.05
dwelling industry service 53.228 18 p <0.001
dwelling industry dwelling 27.436 18 p~0.07

Supported by the two-dimensional tests, we assumed that participants choose /°
following the product of all four potentials; they are, therefore, rational within the set of
the factors we examined. Our next step was to simulate the game cities by applying the
above rules. In this way, we are able to verify the sufficiency of the entire set.
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7 The simulation model of participants’ behavior
The model ‘participants’ built the city in fifty-two steps on a grid identical to the
experimental grid. At each step ¢ they applied the same set u of rules:
(1) Assign urban function f, based on the function of the previously selected building
according to the Markov transition matrix P, given in table 2.
(2) For selected f, and each unoccupied cell /, calculate three distance potentials
according to the distributions presented in figure 4, and a direction potential according
to the distribution presented in figure 6, as well as their product. Use this product as
the overall potential g, , for locating an f, building at /.
(3) Normalize the values «,,

al,/

P = Za . (3)

(4) Consider p,; as the probability to locate an f, building at / and choose one of the
locations according to the p,, distribution.
The details of the simulation are as given in the following discussion.

7.1 Urban space

We represent the city space as a trapezoid (just as in the experiment) of cells, each
20 cm x 20 cm in size, the same as the average size of a mock-up foundation (figure 8).
Each cell can contain one building only.

Figure 8. Representation of the 20 cm x 20 cm cell space used in the model.

7.2 Modeling a building’s function f,

7.2.1 Choice of the initial building’s function

We initiate each model run according to the experimental estimates of the start
frequencies for buildings of each of the three functional types (table 7):

Table 7. Probability to start the simulation with a building of a given functional type.

Building function Probability of assigning the function at 7 = 0

dwelling 0.300
industry 0.067
service 0.633

7.2.2 Type of f, as determined by f,_,
For ¢ > 0 building type is assigned according to the first-order Markov chain, with the
matrix of transition probabilities P given in table 2.
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7.3 Modeling building location /,

7.3.1 Locating the first building

The mean position of the thirty mock-ups situated at the first step is only about 34 cm
from the trapezoid’s center. Thus, we use the center as a reference point for locating the
first building in the city. Depending on its functional type, which is already chosen
according to table 7, the first building is located according to the distance to the
trapezoid’s center. The distance to the center is estimated on the basis of thirty
locations of the first building (table 8), while the angle of vector connecting the
trapezoid’s center and the building’s location is randomly set according to a uniform
distribution.

Table 8. Distributions of distances between buildings of a given functional type, with trapezoid
center at 1 = 0.

Distance from the Probability to locate first building at the given distance
trapezoid center (cm)
dwelling industry service

0-25 0.00 0.00 0.50

25-75 0.22 0.00 0.30

75-175 0.22 0.00 0.05

175-275 0.33 0.50 0.05

>275 0.22 0.50 0.10

Note that, according to tables 7 and 8, more than half of the buildings in the first
step are services that, at t = 0, are located close to the trapezoid’s center.

7.3.2 Locating f,, t > 0

The model evaluates three distance potentials, as given in figure 4, and one direction
potential, as given in figure 6, for all unoccupied buildings at 7z — 1 locations. /, is then
calculated according to their product, as given in (3). Note that the potentials in
figures 4 and 6 could be biased because of the high density of buildings in the latter
time steps. In order to reduce that influence, we based the model on the distributions of
distances obtained with the first twenty steps of each experiment; these distributions
were very close to those presented in figures 4 and 6.

When estimating the direction potential, if the distances between nnl”, and nl”,,
and between nl’ , and / were below 70 cm, the direction potential of the / was calcu-
lated according to the distribution presented in figure 6(a); otherwise, the direction
potential of / was set to uniform.

8 Evaluation of model results

To evaluate the model we generated 500 patterns of fifty-two buildings and constructed
distributions of the distances between each building and its nearest neighbor of each
functional type. Figure 9 presents typical examples of the simulated urban patterns.

As could be expected, the patterns expressed strong aggregation—buildings of the
same functional type tended to cluster together, buildings with different functions were
positioned further apart, industrial buildings tended to be located at the periphery,
dwelling and service clusters were close together, and so forth.

The means and standard deviations of the nearest-neighbor index for the model
and the experiments are presented in table 9. For purposes of comparison, table 9
likewise contains the nearest-neighbor indices estimated for 500 patterns produced by
a ‘reduced model’ in which the type of building was chosen according to the Markov
transition matrix P, given in table 2, while the location was randomly assigned.
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Figure 9. Examples of model patterns at step 52. The area of the squares of a given shade equals
the average foundation area of the mock-ups of a given building function.

Table 9. Means and standard deviations of the distance between a building and its nearest
neighbors in the experiment, model, and reduced model.

Pair Nearest-neighbor distance constructed

experiment model reduced model

mean SD mean SD mean SD
dwelling, , — dwelling, 302 6> 43 4 51 8
dwelling, ; — industry, 1842 97 153 64 50 14
dwelling, |, — service, 1128 56P 85 19 50 11
service,_; — dwelling, 104 41° 106 24 80 19
service,; — industry, 131 63P 120 46 81 30
service,_, — service, 61 14 62 15 84 25
industry, , — dwelling, 280 97° 258 59 132 55
industry, ;, — industry, 58 32 65 37 140 74
industry, , — service, 212 63 196 58 131 55

a2 Model and experimental means differ significantly at p = 0.05.

® Model and experimental standard deviations differ significantly at p = 0.05. All means and a
majority of the standard deviations for the reduced model differ from both experimental and
model ones at p < 0.05.
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As could be expected, the mean values of the nearest-neighbor indices obtained in the
second case significantly differed from the experiment and from the model.

Regarding the experimental and model results, in about half of the cases, the
differences are insignificant; in all cases excluding one, the difference between the experi-
mental and model means is less than 20%. Nonetheless, despite its low level, the
noncorrespondence demands further investigation.

We should stress that the experimental information included in the model does not
automatically indicate successful simulation. Indeed, the model incorporates important
assumptions that simply cannot be tested experimentally:

e participants’ decisions at each time step are two-staged decisions, entailing choice
of function and location;

e participants’ location decisions regarding distance are determined by the distances
to the buildings’ nearest neighbors of three functional types;

e participants’ location decisions regarding direction are determined by the relative
location of buildings of the same functional type only;

e in the course of decision making, model participants adjust their behavior to the
product of three distance potentials and one direction potential.

One or more of these assumptions may be wrong and cause the above-mentioned
noncorrespondence between the experiment and the model results. Model studies make
it possible to investigate a spectrum of ‘what-if” questions regarding the importance
of one or more of the associated assumptions. In what follows we limit ourselves to the
investigation of only two of these assumptions.

Contrary to the assumption that location potential is the product of three distance
potentials, and one direction potential, we assumed that the overall location potential
is estimated according to the product of the highest of the three distance potentials and
the direction potential. This ‘bounded rationality’ view was actually our theoretical
starting point with respect to the ability of human participants to combine potentials.
In brief, according to the nearest-neighbor analysis, the model patterns obtained under
these assumptions corresponded much less to the experimental results than to those
based on the product of all four potentials, as presented in table 9.

In the following section, we investigate in greater detail the consequences of recalling
the assumption that all game participants follow the shared and time-independent set of
rules.

9 Behavior of the game participants versus the average model results

Let us recall two main disagreements between the model and the game city patterns
that do remain. First, the test of the hypothesis regarding the Markov chain as the
model of the choice of the mock-up functional type resulted in significant ¢ values for
three-step and four-step histories (table 3). Second, disagreements remained between
the mean and variance of the nearest-neighbor index, especially in the case of the
dwellings’ neighbors (table 9); in almost all cases, the model nearest-neighbor index
varies less for the model patterns than for those obtained in the experiments.

We should also recall that the above results were obtained in a model that simu-
lated participant behavior according to the rules formulated in section 7, with the
parameters given in table 2 and in figures 4 and 6. Let us call them the set of model
rules (SMR). In the following discussion we explain the differences between the
model and the experiments by altering the assumption that the SMR is shared by all
human participants and employed during the entire game. One can thus conceive of a
participant who employs the rules with parameters different from those of the SMR,
or whose rules change as the game develops, or possibly both.
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To identify possible individual deviations, we compared the potentials of the
buildings’ locations which the participants actually produced, with the potentials of
those locations as estimated according to the model. The idea was that if participant b
acts according to the SMR at each time step, then the potentials of the actually
selected locations Z,b, t=20,1,2,...,51, would be sufficiently close to the highest
possible potential, calculated according to the SMR; participants’ patterns P; should
therefore be close to that generated by the model.

We perform this investigation on the basis of two measures. First, we quantify the
participant’s tendency to abide by the SMR by calculating the fraction ¢ of locations,
free at 7, where the estimated potential was higher than the potential of the actually
selected location. To characterize the correspondence between the participant’s behav-
ior and the model from the beginning of the experiment until time step ¢, we calculate
the time average, ¢, of the ¢’-values for i between 0 and ¢ [figures 10(c) and 10(d)].
If the participant followed the SMR, then his or her § series remained close to
zero for all 7. The ¢ series revealed the participants who strictly followed the SMR
[as in figures 10(a) and 10(c)] and those who systematically deviated from it [as in
figures 10(b) and 10(d)].
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Figure 10. The difference between the player’s behavior and the model: (a) model-like behavior;
(b) behavior deviating from the model; (c) cumulative averge of (a); (d) cumulative average of (b).
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Second, to characterize whether the game pattern resembled that produced by the
model, let us consider every building 7 in the experimental pattern P produced by b;
let a building’s functional type be £;* and let it be located at /°. We then estimate the
fraction r, of locations at 7, where the model potential for i is greater than that at its
actual location /°, assuming that the other buildings in P are already in place. One
can readily note that the calculation procedure is equivalent to that employed for
calculating ¢ but that, this time, the order of development is ignored. The average of
r;, values over the pattern P, 7, estimates the extent to which P could be an outcome
of the model, although it is not at all necessary for those patterns to be constructed by
a game participant who follows the SMR. To wit, one can consider the pattern Ps,
generated with the model, and rebuild it by placing the same mock-ups into the same
locations but in a different order—first for all dwellings, then for all industry, and
finally for all services. The P5; will be thus repeated by a process that has nothing in
common with the SMR.

Comparison of the (¢, #”)-trajectory of the individual participants » with the spec-
trum of the model (g,, 7,)-trajectories makes it possible to identify game participants of
three types.

First, if the trajectory of a certain game participant always remained within the
model (g,, 7,)-domain, then he or she made decisions that followed the SMR, with
the preservation of the time correspondence between the individual and the model
patterns.

Second, if an individual (¢, 7”)-trajectory extends beyond the (§,, 7,)-domain
generated by the model, two other options are possible. First, if both ¢’ and # differ
from the model values, then the behavior of the game participant does not follow the
SMR and the pattern P that he or she constructed differs from those generated by
the model. Second, when the values of the ¢ only fall beyond the model (§,, 7,)-
domain, then b does not follow SMR, although the patterns that the participant
constructed can nonetheless be generated by the model.

To verify these three options, figure 11 displays the scatterplots of (4%, 7% ) and
(@5, 72). As can be seen, up to ¢ = 20, all participants, excluding three, behave in an
SMR fashion and produce game cities that do not differ from model-generated cities
[figure 11(a)]. However, with time, the situation changes [figure 11(b)], and some parti-
cipants keep following the SMR until the very end, while others do not. Figure 12
presents three patterns that do not deviate from the model at 1 = 51 (marked a, b, and ¢
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Figure 11. (a) (q,, 7,) scatterplot at ¢ = 20; (b) (¢,, ,) scatterplot at r = 51.



704 E Hatna, I Benenson

[ | ode | [] Jri=]=¢= 'H TT1 ]
[ ] 08 b | [[B] [=[apa]a L9111 =
| | 4 B 1TOE ]
H S ] L=
e |
VL' 1 S|EH =]
%:% j o o
&II AN R [
&N \ll
(@
[ ]
[ [
[
Fﬂtﬁ
= 1 q
b E
LN
2
©
e e
[ &d ” B
ol 2
* =l II] A mCIE lgn 1)
. &8 REGES ESIE
4 ;QH L[] B0 o
. TS s Building category
SESCOE ECEE SREaE .
i =T @ dwelling
i [ industry
!ﬂ: @ scrvice
(e ol 0y

Figure 12. (a), (b), and (c) The final patterns produced by players who followed the model during
all fifty-two time steps (points a, b, and c¢ in figure 11); (d), (¢), and (f) the patterns of the three
players who deviated most from the model (points d, e, and f in figure 11).

on figure 11) and those for which the deviation at 1 = 51 is maximal (marked d, e,
and f on figure 11). One can see that the SMR followers produced clustered cities of a
definite sort [figures 12(a), (b), and (c)], while the participants who produced patterns
deviating from the model [figures 12(d), (¢), and ()] likewise differed among themselves.
The participant who produced the pattern presented in figure 12(d) seems to have failed
to implement some definite program; the city appears quite disorganized by the end
of the experiment. The cities presented in figures 12(e) and 12(f) are clearly organized:
the city in figure 12(e) seems to be a mixture of the organized and disorganized parts,
and that in figure 12(f) appears to be fully organized. At the same time, none of these
three patterns can be produced by the SMR and they all look different from those
in figures 12(a), (b), and 12(c). Did their game participants follow first-order rule sets
that differ from the SMR or did they vary the rules during the game? Our data are
insufficient for an answer.

To conclude the analysis of the patterns, the game experiments clearly favor the idea
of a shared set of rules that can be formally considered as first-order time-independent
recursion for representing the behavior of the majority of game participants. With the
increase in city complexity, however, the behavior of some participants tends to deviate
from the behavior generated in the model. For some of the participants this behavior
results in disorganized patterns; for others the city patterns remain organized despite
behavior that differs from that characterizing the majority.

Let us also note that the analysis of the experiment’s spatial outcomes does not
permit recognition of whether the students developed patterns that could potentially
function as urban systems or whether they simply retrieved a city image from memory
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and then filled in the gaps in locations with the models available.® However, the
students’ comments provide informal arguments in favor of ‘zoning-oriented’ and
‘developer-like’ behavior. Consider the comments made by Edna: in the very begin-
ning—“I’'m putting the religious building, like a synagogue, in the center of the
city—everyone would want to visit there”” Soon after that—“And now I'm building
a residential neighborhood around here”, and in explaining the final pattern—
“My intention was to locate the dwellings in a way that all kinds of services, such
as culture and leisure, were close by.” Eitan provides another example: “Here are
the streets that bring people to the center of the city” and “I have located some
of the buildings along a diagonal, to destroy the symmetry.”

10 From games back to cities

By means of our ‘development game’, we investigated the individual behavior of thirty
students. Although lacking any experience of real development, they had been taught
what cities should look like. Each was asked to construct a city of fifty-two buildings,
and was then left alone to complete the task; their behavior and the resulting game
patterns were recorded in fine detail. Based on these records, the set of shared first-
order recursive rules that described the choice of the urban function and the location
of the buildings was formulated. A model that simulates participant behavior based on
these revealed rules was likewise constructed. Comparisons between the urban patterns
generated by the model and those constructed by the game participants clearly
demonstrated that the majority of students acted according to the rules.

Despite the game being a remote semblance of a real city, we view our experiment
as providing some important insights into the relationship between models of urban
land-use dynamics and the human activities that, in effect, determine these dynamics.
As summarized at the beginning of this paper, a first-order recursive set of land-change
rules characterize contemporary urban modeling’s default setting. Land uses, however,
do not change by themselves—human beings decide where to build offices, dwellings,
malls, or parks. To understand and appropriately model urban dynamics, we are
required to relate between these two views.

This relationship between rules and human behavior was recently proposed by
Portugali in his interrepresentation network (IRN) hypothesis: emerging urban patterns
essentially determine (‘enslave’) the future decisions of urban developers and force
them to further reproduce those patterns (Portugali, 1996; 2000). We consider our
game as experimentally supporting the IRN hypothesis, yet extending it still further.
Namely, on the basis of our experiment, we suggest that: (1) humans are able to extract
the rules of a pattern’s development, and (2) the majority of individuals extract similar
and simple rules, rooted mainly in the immediate past. Because our participants had
no experience of real development and planning activity, we can assume that the initial
state of the majority of real developers and planners is similar to that of our partici-
pants—they may be enslaved from the very start. Numerous real-world constraints can
only intensify this tendency to behave similarly.

Some participants did fail to produce an organized pattern, while others produced
partially organized or well-organized patterns, acting in an organized but unusual
fashion. The latter cases are evidently insufficient for generalizations but, nonetheless,
inspire some parallels between behavioral and genetic variability. Just as genetic vari-
ability is a source for natural selection, individual variability in the formulation of
development rules may be inherent in humans. Uncommon rules, just like recessive
genes, can be preserved by some developers and planners. With changes in exogenous

3 We wish to thank the anonymous referee who raised this issue.
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or endogenous conditions (such as the density of the buildings in our experiments), this
behavior can become advantageous. If repeated by the masses, the new path of urban
development can be fixed, thus providing the bifurcation mechanism Portugali (2000)
discusses but does not specify in his IRN theory.

To conclude, a real city is built by many experienced participants, all involved in
numerous vertical and horizontal relationships, from cooperation to antagonism, with
the majority abiding by a mass of planning directives and limitations and reacting to
varying demands for land uses of different kinds. They are all, nonetheless, human
beings. The results of our experiments support the view that, over extensive periods
of time, the majority of developers obey a simple set of common rules that do not
necessarily correspond to the written rules. We can also argue that not all participants
tend to share the same rules; hence, the inherent variability of development behavior
can be preserved.

We consider our experiment as a preliminary yet important step towards adequate
modeling of decision-making behavior among real developers and planners.

Acknowledgements. We would like to acknowledge Dr Hernan Casakin for his valuable contributions
in the experimental part of the research.
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